Вас интересует, зачем применяется электронный модуль ЭПРА для люминесцентных ламп и как его правильно подключить? Верный способ установки энергосберегающих светильников позволяет значительно продлить срок их службы, верно? Но возможно, вы не знаете, как корректно осуществить подключение ЭПРА и действительно ли это необходимо сделать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых люминесцентных лампочек, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Электромагнитный пускорегулятор

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Стартер люминесцентной лампы

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Электронный пускорегулятор

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Схемы электронного балласта 4×18 (2×36)

ЭБ 4×18 используется с инвертирующими конденсаторами, емкость которых 5 пФ. Таким образом, сопротивление данного модуля может повышаться до 40 Ом. Еще одной особенностью данной схемы является нахождение дроссельного элемента (его можно обнаружить ниже динистора).

В схеме выше используется только один транзистор. Трансформатор выполняет функцию понижения и выпрямления тока. Этот элемент защищает устройство от перегрузок, однако в схеме присутствует и предохранитель.

Еще один ЭБ 4×18 — «Навигатор». В схеме также присутствуют понижающий трансформатор и транзистор. Основное отличие заключается в наличии специального регулятора, который позволяет изменять выходное напряжение. Емкостный резистор также отличает эту схему от предыдущей.

Обратите внимание! Здесь используются два конденсатора с емкостью 5 и 7 пФ. Это позволяет создавать сопротивление до 40 Ом. В данной схеме не применяется предохранитель.

Схема балласта 2×36 включает в себя трансивер для расширения. Подключение устройства производится при помощи устройства-переходника. Так же как и в предыдущих вариантах, имеются конденсаторы, однако емкость их меньше, всего 4 пФ. Схему отличает наличие тиристоров и регуляторов частоты. У большинства моделей модулей такого типа можно увидеть в схеме два выпрямителя. Рабочее напряжение такого балласта равно 200 В, а частота — 55 Гц.

Вам это будет интересно Ток через конденсатор

Электронный балласт 4×18 — необходимое устройство для сохранения целостности люминесцентных ламп. Схем, чтобы его подключить, существует несколько. Выбрать можно наиболее подходящую и простую в исполнении.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Относительно мощная люминесцентная лампа

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Внутреннее содержимое ЭПРА

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном балласте. Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Преимущества

Есть серьезные преимущества в использовании данного устройства:

  • включение люминесцентной лампы происходит быстро, но плавно;
  • отсутствует шум и нет моргания;
  • коэффициент мощности – 0,95;
  • по сравнению с устаревшим, практически не нагревается, поэтому происходит существенная экономия электричества, больше 20%;
  • благодаря наличию сразу нескольких элементов для безопасности, это существенно снижает вероятность возгорания, увеличивается удобство при использовании во много раз;
  • лампа светит плавно, отсутствует мерцание.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение люминесцентных ламп через ЭПРА

Улучшить работу люминесцентного светильника, убрав надоедливое гудение, раздражающее моргание, и повысить яркость свечения вполне реально самому. Достаточно лишь заменить устаревшую схему дроссельного управления на современный электронный пускорегулирующий аппарат — ЭПРА.

Подключение балластной электроники возможно выполнить с любой люминесцентной трубкой, всех типов: Т12, Т8 и Т5, но к лампам Т12 оно будет не так рационально. Производство ламп Т12 сейчас сокращается, ввиду их низкой энергоэкономичности по сравнению с другими Т8 и Т5. За границей устаревшие Т12 фактически уже не выпускаются.

Обычный, купленный в магазине ЭПРА состоит из:

  • фильтра низкочастотных помех, работающего на вход и выход устройства;
  • выпрямителя переменного тока сетевой частоты;
  • инвертора;
  • элементов для коррекции коэффициента мощности;
  • фильтра постоянного тока;
  • дросселя, ограничивающего рабочий ток.

Светильник запускается электронным балластом в три этапа:

  1. Прогрев спиралей лампы для последующего плавного пуска, продлевающего срок службы.
  2. Подача импульса повышенного напряжения, необходимого для включения лампы.
  3. Стабилизация напряжения на рабочем уровне после зажигания светильника.

Подключение люминесцентных ламп через ЭПРА

Первое, что нужно сделать — разобрать светильник и вынуть из него старую начинку: дроссель, стартер, конденсаторы. В конечном итоге внутри должны остаться лампы дневного света, комплект проводов и новоустановленный электронный блок.

Для такой работы вам потребуется:

  • индикатор фазы;
  • отвертка крестовая;
  • кусачки;
  • канцелярский нож для зачистки проводов;
  • изоляционная лента;
  • саморезы, понадобятся для закрепления блока ЭПРА.

Покупать новый электронный блок следует исходя из мощности вашего светильника.

Подключение ЭПРА к люминесцентным лампам несложно сделать, имея минимальные познания в электрических схемах, и небольшой опыт работы с электропроводкой.

Перед тем как собирать схему, следует выбрать внутри светильника место для закрепления коробка ЭПРА, руководствуясь длиной проводов и удобством доступа к клеммам. Электронный блок быстро и надежно закрепляется к корпусу при помощи обычных саморезов в пробитые гвоздем отверстия. Теперь можно соединить пускорегулирующий аппарат с розетками ламп.

Подключая две люминесцентные лампы, без разницы последовательно или параллельно, убедитесь в том, что мощность электронного блока в два раза выше, чем у каждого источника света. Таким же принципом, важно руководствоваться при сборке трёх и более ламп в одном светильнике.

Собрав осветительный прибор, нужно бы его повесить на место. Перед подключением проводов, торчащих из стены, проверьте отсутствие напряжения на них индикатором.

Самый ответственный момент — первое включение прибора с ЭПРА. Если светильник, например, с двумя лампами был собран правильно, тогда: во-первых, лампы засветятся одновременно быстро, без разогрева как было раньше; во-вторых, свет перестанет заметно мерцать, пропадет низкочастотное гудение и повысится яркость света в целом.

Рекомендуем:

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы регулятора мощности осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Что такое электронный балласт 4х18 (электронное пусковое устройство)

Балласт в схемах используется для ограничения величины тока. В момент появления заряда в газе лампы его величина возрастает мгновенно, а сопротивление падает. Это вызывает нагрев контактов светильника и их вероятное перегорание. Для предотвращения этого и применяются данные устройства.

К сведению! Наиболее широко распространены электронные и электромагнитные балласты. Электромагнитный модуль создает регулируемое индуктивное сопротивление катушки. Электронное устройство изменяет и регулирует сам сигнал.

Электронное пусковое устройство для люминесцентных лампочек имеет несколько преимуществ:

  • предотвращает мерцание;
  • намного меньше в размерах и весе;
  • не создает постороннего шума;
  • имеет режим «горячего старта», при котором контакты светильника предварительно нагреваются, что увеличивает срок их службы.

Выводы и полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

Вы разбираетесь в вопросах принципа работы и схем подключения ЭПРА и хотите дополнить изложенный выше материал личными наблюдениями? Или хотите поделиться полезными рекомендациями по нюансам ремонта, замены или выбора пускорегулирующего аппарата? Пишите, пожалуйста, свои комментарии к этой записи в блоке ниже.

Конструкция и принцип работы ЭПРА

По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

Что лучше светодиодные лампы или энергосберегающие?


В зависимости от того, для каких целей вы планируете использовать лампы, светодиодные лампы могут быть лучшим выбором по сравнению с энергосберегающими лампами.

Вот несколько преимуществ светодиодных ламп:

  1. Более долгий срок службы: Светодиодные лампы обычно имеют более длительный срок службы, чем энергосберегающие лампы. Срок службы светодиодных ламп может достигать до 50 000 часов, тогда как энергосберегающие лампы имеют срок службы около 10 000-15 000 часов.

  2. Более экономичный расход электроэнергии: Светодиодные лампы потребляют меньше электроэнергии по сравнению с энергосберегающими лампами. Например, 10-ваттная светодиодная лампа может производить столько же света, сколько и 60-ваттная лампа накаливания, при этом потребляя гораздо меньше энергии.

  3. Не содержат ртути: Энергосберегающие лампы содержат некоторое количество ртути, что может быть опасно для здоровья и окружающей среды при их разбивании. Светодиодные лампы не содержат ртути и поэтому более безопасны в использовании.

  4. Более широкий выбор цветовых оттенков: Светодиодные лампы доступны в широком диапазоне цветовых оттенков, в то время как энергосберегающие лампы, как правило, доступны только в холодных и теплых оттенках.

Однако, следует отметить, что светодиодные лампы могут стоить дороже, чем энергосберегающие лампы. Кроме того, энергосберегающие лампы имеют более высокий коэффициент воспроизведения цвета (CRI), что может быть важным фактором при выборе ламп для использования в качестве основного освещения в доме.

В целом, если вы ищете экономичный, долговечный и безопасный вариант, светодиодные лампы мог

ут быть лучшим выбором. Однако, если вам нужны лампы для основного освещения в доме, где важна точность воспроизведения цвета, то лучше выбрать энергосберегающие лампы с высоким коэффициентом воспроизведения цвета.

В целом, выбор между светодиодными и энергосберегающими лампами зависит от ваших потребностей и бюджета. При выборе ламп следует учитывать не только их стоимость, но и энергоэффективность, длительность службы, безопасность и качество освещения.

Добавить комментарий