Нахлест арматуры в железобетонных конструкциях — особенности работы. Конструирование на конструируем.рф
Соединения арматуры с нахлестом в первую очередь используются из технологических соображений, таких как удобство процесса соединения (без необходимости специального контроля, как, например, при сварке) и высокая скорость выполнения работ.
Главная особенность состоит в том, что в работе стыка участвует бетон, в отличии от сварного соединения или соединения с помощью муфт. Каждый из нахлестываемых стержней цепляется своими выступами за окружающий соединение бетон и передает через него усилия на соседний стержень, под некоторым углом. Общий принцип распределения напряжений в арматуре аналогичен распределению напряжений при анкеровке. В начале стыка напряжение в стержне максимальное, в конце стержня равно нулю. Аналогично и у второго стержня. Суммарное усилие, которое воспринимают оба стержня на любом участке по длине стыка не превосходит усилия в начале стыка в каждом из стержней. Условно можно считать, что в середине стыка каждый из стержней воспринимает половину приходящегося на стык усилия. Длину нахлеста, теоретически, можно считать равной длине анкеровки, но как показывает практика, передача усилия с одного стержня на другой, с участием бетона, происходит хуже, чем передача усилий с арматуры на бетон при анкеровке, поэтому в нормах добавлены коэффициенты, увеличивающие длину нахлеста по сравнению с длиной анкеровки.
Передача усилий в соединениях внахлест
Поле напряжений на длине нахлеста каждого из стержней
Характерное откалывание защитного слоя бетона
Чем выше диаметр стержней и соответственно усилия в них, тем выше усилия и в бетоне. Для восприятия поперечных раскалывающих усилий, в пределах стыка, должна устанавливаться перечная арматура (данное обязательное требование относится и к стыкам, работающим на динамические нагрузки). При отсутствии поперечной арматуры особо важную роль играет величина защитного слоя, так, при небольшой его величине и большом диаметре стыкуемых стержней, он может легко отколоться и стык работать не будет.
При близком расположении стыков раскалывающие напряжения в бетоне накладываются, поэтому в нормах по железобетону указано о необходимости смещения стыков относительно друг друга.
Распределение поперечных растягивающих напряжений в бетоне
Возможные варианты установки поперечной арматуры
Поперечная арматура в виде спиралей
Поперечную арматуру можно не устанавливать, если арматура стыкуется в 1/4 — 1/3 пролета, где напряжения в ней минимальные и по расчету (на действие изгибающих моментов) требуется арматура диаметром не более 10 мм, при расстоянии между стыками не менее 10d стыкуемой арматуры.
Требование к установке поперечной арматуры для стыкующихся внахлест стержней также указано в «Методическое пособие Проектирование железобетонных конструкций с применением сварных сеток и каркасов заводского изготовления. Москва 2016». Цитата из пособия: «При стыковании арматуры внахлестку дополнительная поперечная арматура требуется в следующих случаях:
— диаметр стыкуемых стержней 16 мм и более;
— свыше 50% стержней стыкуется в одном сечении;
— при воздействии динамических нагрузок.
Поперечную арматуру располагают на участках 1/3 l по краям длины нахлестки. На каждом из этих участков должно быть не менее трех поперечных стержней, при продольной арматуре из стали А500СП, их число может быть снижено до двух.
Поперечная арматура должна располагаться с внешней стороны стыкуемых стержней. Для постоянно сжатых стержней по одному дополнительному поперечному стержню следует устанавливать с каждой стороны за пределами длины нахлестки на расстоянии 4ds, от крайних поперечных стержней, расположенных в пределах длины нахлестки. В качестве поперечной арматуры стыков можно использовать горизонтальные участки хомутов, вертикальные (боковые) участки которых служат для обеспечения прочности на срез. Поперечная арматура в виде узких хомутов или скруток, охватывающая стыкуемые стержни, рекомендуется для стержней крупных диаметров (28 мм и выше).
…В сжатых элементах допустимо стыковать все стержни в одном сечении путем нахлестки без сварки. Стержни диаметров более 25 мм в сжатых элементах и 32 мм в растянутых не рекомендуется стыковать внахлестку.
В порядке исключения такие соединения допустимы, если минимальный размер поперечного сечения элемента равен или более 1 м и, если напряжения в стержне не превышают 80% расчетного сопротивления.
Для стыкования стержней большого диаметра могут быть применены контактные стыки (только для условий работы на сжатие), а также сварные стыки и стыки с использованием винтовых или обжимных муфт.
При отсутствии поперечных сжимающих усилий в зоне стыкования стержней внахлестку следует устанавливать конструктивную поперечную арматуру. При стыковании внахлестку стержней, работающих на растяжение, поперечную арматуру устанавливают по расчету.
Для восприятия расклинивающих усилий у концов стыкуемых сжатых и растянутых стержней необходима установка дополнительной поперечной арматуры у концов стержней за пределами нахлестки на участках 4ds».
Кроме указанного выше документа требование об установке поперечной арматуры для растянутых стыков содержится в «Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)» (в пункте 5.51), а также в СП 63.13330 (в пункте 10.3.30) и в др. литературе по железобетону.
Дальше в статье приведены результаты экспериментального исследования работы стыков внахлест в балках.
Работа стыков растянутой арматуры при чистом изгибе балок
Материалы данной главы взяты из статьи Мехрана Ghasabeh (с ресурса: http://etd.lib.metu.edu.tr/upload/12615530/index.pdf).
Два типа разрушений балок, при недостаточном сцеплении арматуры:
1. Образование трещин на растянутой грани балки, если защитный слой арматуры менее половины расстояния в свету между стержнями
2. Образование трещин на боковой грани балки, если расстояние в свету между стержнями менее защитного слоя арматуры
В первом эксперименте Мехрана Ghasabeh балка хрупко разрушилась в месте нахлеста не достигныв предельных напряжений в арматуре, рассчитанных по уравнениям прочности.
Схема установки для испытания балок на чистый изгиб
Схема армирования экспериментальной балки без хомутов в зоне нахлеста
Изгибная трещина на боковой грани балки возле свободного конца стержня (в начале нахлеста)
Изгибная трещина на верхней грани балки
Разрушение произошло на растянутой грани от изгибной трещины в конце стыка.
Во втором эксперименте защитный слой до верхней и боковых граней балки был больше расстояния между стержнями, разрушение балки произошло по боковым граням. После образования трещин на боковых гранях, изгибные трещины раскрылись еще больше.
Образование трещин на боковой грани с раскрытием изгибной трещины
Пример 1 испытания балки на изгиб в зоне нахлеста арматуры
Пример 2 испытания балки на изгиб в зоне нахлеста арматуры
Пример разрушения растянутого стыка арматуры
В последнем эксперименте была та же арматура и защитные слои, что и в прошлом эксперименте, но было установлено 6 хомутов, вместо 4-х, чтобы добиться разрушения от изгибных трещин. Первыми появились изгибные трещины, далее, при образовании боковых продольных трещин, из-за небольшого защитного слоя (менее допустимого по ACI) произошло хрупкое разрушение балки при напряжениях, меньших, чем балка несла в прошлом эксперименте (с 4 хомутами). Таким образом, при нарушении величины защитного слоя поперечная арматура не только не увеличила прочность стыка, но даже ухудшила работу стыка.
Изгибная и боковая продольная трещина при разрушении балки
Схема расположения тензодатчиков на арматурных стержнях
Продольные деформации при разрушении балки
По результатам экспериментов были сделаны следующие выводы:
- Первые трещины всегда появлялись на концах нахлестываемых стержней. Из-за этих трещин на концевых участках, в сплошных стержнях возрастают напряжения и деформации;
- Результаты аналитического расчета предельных усилий очень близки к экспериментальным данным;
- Максимальные напряжения были зафиксированы на непрерывных стержнях, в начале стыка и уменьшались, практически, до нуля на свободных концах стыкуемых стержней, деформации на свободных концах также были около нуля;
- Напряжения в поперечной арматуре оказались различными, были зафиксированы, как растягивающие напряжения, так и сжимающие, поэтому трудно сделать общий вывод, однако, во всех балках, напряжения в угловых зонах хомутов оказались выше чем в средних зонах. Деформации поперечной арматуры, расположенных на концах стыков, были выше, чем деформации на поперечной арматуре, расположенной ближе к середине стыкуемых стержней;
- Увеличение поперечной арматуры не привело к ожидаемому увеличению несущей способности балки из-за того, что защитные слои сверху и на боковых поверхностях балки были меньше допустимых по нормам. Следует обращать особое внимание к защитному слою и расстоянию между стержнями в балках со стыкуемыми внахлест стержнями, так как эти параметры сильно влияют на несущую способность.
Работа изгибаемых стыков с дополнительным поперечным армированием
В данной главе использованы материалы кандидатской диссертации Мохамеда Кассема Омара «Влияние косвенного армирования на несущую способность стыковых соединений арматуры железобетонных конструкций» (с сайта tekhnosfera.com).
В диссертации рассматриваются экспериментальные исследования бессварных стыков с косвенной спиральной арматурой и дополнительной продольной арматурой внутри кольцевой спирали, создающей эффект обоймы, и рассматривается влияние данного эффекта на несущую способность стыкового соединения. Установлено увеличение касательных напряжений на торцах стыка и близкое к линейному распределение в средней части стыка.
Отличие работы сжатых и растянутых стыков арматуры в колоннах
Материалы данной главы взяты из зарубежной литературы к коду EC2.
Особенностью работы сжатых бессварных стыков арматуры является передача сжимающего усилия не только по длине стыкуемых стержней, но и через их торцы (по аналогии со сваями в грунте), которые опираются на бетон и передают на него часть сжимающего усилия. Кроме того, из-за отсутствия растяжения в бетоне (и соответственно трещин в нем), он воспринимает больше усилий, чем в растянутых стыках. В растянутом стыке напряжения в стержнях увеличиваются в местах образования трещин по длине стыка, в сжатом усилия более равномерные, из-за отсутствия трещин. Силы сцепления арматуры с бетоном до образования трещин непрерывны, после образования трещин становятся прерывными, и на стержни, в местах образования трещин, передается больше растягивающих усилий. В середине стыка каждый из растянутых стержней воспринимает половину усилия, действующего в стержнях в начале соединения внахлест.
При расположении колонн на торце фундаментных плит рекомендуется устанавливать дополнительные П-образные хомуты для вертикальных стержней колонны в теле фундаментной плиты для предотвращения сдвига по наклонному сечению
Пример установки поперечных стержней за зоной сжатого стыка
В сжатом стыке, в отличии от растянутого, нет такой сильной зависимости несущей способности стыка от защитного слоя бетона, однако, есть зависимость несущей способности от расстояния между торцом стержня и кромкой бетона (из-за эффекта опирания торца стержня на бетон). Влияние поперечной арматуры больше в сжатом стыке, чем в растянутом. При сжатии, торец стержня упирается в бетон и создает эффект «протыкания» бетона, чтобы этот эффект предотвратить, в европейских нормах есть требование об установке дополнительного поперечного стержня за зоной нахлеста, на расстоянии не менее 4 диаметров анкеруемого стержня.
Соединение внахлест сжатой арматуры по Еврокоду 2
Если в колонне есть растянутые стыки, они работают аналогично растянутым стыкам в плите перекрытия.
Следует также отметить, что в действующем СП63, в отличие от СП52, нет требования по разбежке сжатых стержней стыкуемых внахлест в одном сечении, в СП63 это требование оставили только для растянутых стержней.
Если нахлест осуществляется с помощью отгиба арматуры в средней части колонны, то нужно конструктивно устанавливать дополнительные хомуты в месте отгибания вертикальных стержней, так как из-за изгиба появляется горизонтальная составляющая вертикальной силы, которая стремиться выколоть защитный слой в зоне изгиба.
Рис. 1. Схема распределения усилий в зоне отгиба вертикального арматурного стержня
Рис. 2. Дополнительные хомуты при величине отгибаемой части стержня большей, чем толщина плиты
Рис. 3. Схема выкалывающих усилий в зоне отгиба арматурного стержня при действии сжимающих или растягивающих усилий (из статьи «Bursting forces in reinforced concrete column. M. Gohner, С. Morris, K. Webber. The Structural Engineer Volume 77/NOS 23 & 24 7 December 1999. Источник: «https://www.istructe.org/webtest/files/e0/e0392631-9f18-44d8-ad69-4d5895b52b42.pdf»)
Рис. 4. Схема выкалывающих усилий в зоне отгиба арматурного стержня при действии сжимающих усилий (из статьи «Bursting forces in reinforced concrete column. M. Gohner, С. Morris, K. Webber. The Structural Engineer Volume 77/NOS 23 & 24 7 December 1999. Источник: «https://www.istructe.org/webtest/files/e0/e0392631-9f18-44d8-ad69-4d5895b52b42.pdf»)
Рис. 5. Формулы для определения выкалывающего усилия в бетоне и напряжений в охватывающем отгибаемый стержень хомуте (из статьи «Bursting forces in reinforced concrete column. M. Gohner, С. Morris, K. Webber. The Structural Engineer Volume 77/NOS 23 & 24 7 December 1999. Источник: «https://www.istructe.org/webtest/files/e0/e0392631-9f18-44d8-ad69-4d5895b52b42.pdf»)
Особенность работы стыков внахлест, в колоннах, при циклических сейсмических нагрузках
У сейсмических нагрузок есть 2 главных отличия от обычных нагрузок: 1) эта нагрузка является циклической (повторяющейся), 2) эта нагрузка приводит к знакопеременным усилиям в колоннах.
Работа стыков арматуры в колоннах при сейсмических нагрузках
Ссылки:
- Прочность изгибаемых элементов, армированных стержнями класса А500С, соединенными внахлестку без сварки. Бетон и железобетон. Февраль 2002, №1;
- Деформативность и трещиностойкость изгибаемых элементов, армированных стержнями класса А500С, соединенными внахлест без сварки. Бетон и железобетон. Апрель 2003, №2.
Чем соединять арматуру?
Арматуру можно соединять различными способами, в зависимости от требуемой конструкции и условий эксплуатации. Некоторые из наиболее распространенных способов соединения арматуры включают в себя:
-
Сварка. Сварка является одним из наиболее прочных способов соединения арматуры. Для сварки используется электродуговая сварка, которая позволяет соединять металлические детали, в том числе арматуру, при помощи электрической дуги.
-
Завальцовка. Завальцовка — это процесс соединения двух концов арматуры с помощью специального инструмента, который разглаживает края и соединяет их вместе.
-
Скрепление болтами. Болты используются для соединения двух концов арматуры вместе. Для этого на концах арматуры сверлятся отверстия, а затем скрепляются болтами.
-
Соединение гибкими зажимами. Гибкие зажимы позволяют соединять арматуру без необходимости сварки, завальцовки или применения болтов. В этом случае используется специальная пружина или зажим, который закрепляется на концах арматуры и держит их вместе.
Важно учитывать, что при соединении арматуры необходимо соблюдать требования строительных норм и правил, а также производителя конкретной арматуры, чтобы обеспечить максимальную прочность и надежность конструкции.